Determination of Avogadro's Number

- An estimation of Avogadro's Number will be made by measuring the area of a monolayer of a known weight of oleic acid.

Principles

- Number of molecules in a mole is Avogadro's Number (N)
- Number of Molecules in a film that is one molecule thick can be counted

Principles

- Fatty acid will easily form one molecule thick layer that is roughly circular.
- Area of monolayer can be used to find Avogadro's Number.

Procedure

- Make a dilute acid solution from 900 ml of distilled water and 3 drops of 6M HCl .
- Put Dilute Acid solution in a pan and cover surface with piston oil.

Procedure

- Weigh a clean, dry test tube to nearest 1 mg .
- Add 4 drops (about 100 mg) of Oleic acid and reweigh the test tube.
- Using a pipet, add 10.0 ml of petroleum ether to the test tube.
- Mix well by swirling.

Procedure

- Dilute mixture by $1 / 10$
- Dilute a second time by $1 / 10$
- Dust Surface of oil coated water with lycopodium powder.

Procedure

- Put exactly 0.10 ml of diluted oleic acid on center of water.
- Suspend a glass plate over the pan and trace the outline of the oleic acid.

Safety

- It is important that you always keep your safety goggles on.
- Acid in the eyes can cause blindness!
- Petroleum ether is very flammable!

Calculations

Mass of oleic acid:

Mass of oleic acid in first test tube:
(test tube +oleic acid) - test tube

Calculations

Mass of oleic acid:

Mass of oleic acid in last test tube:
$\frac{\text { mass of oleic acid }(\mathrm{g})}{10 \mathrm{ml}} \times \frac{1.0}{10.0} \times \frac{1.0}{10.0} \times 0.1 \mathrm{ml}$

Calculations

Volume of one mole of oleic acid:

$$
\frac{\mathrm{mass} \text { of one mole }}{\text { density of the acid }}=\frac{282 \mathrm{~g} / \mathrm{mol}}{0.895 \mathrm{~g} / \mathrm{ml}}
$$

Calculations

Volume of one oleic acid molecule:
If the total volume of acid is known,

$$
\text { density }=\frac{\text { mass acid }}{\text { volume acid }}
$$

$$
\text { volume acid }=\frac{\text { mass acid }}{\text { density }}
$$

Calculations

Volume = Area x Thickness

Volume
 Thickness Area

Calculations

If the molecule is assumed to be a cube, then

Volume of 1 molecule = (Thickness) 3

Calculations

Since Avogadro's Number is the number of molecules in one mole, the volume of one mole and the volume of one molecule can be used to obtain a value for Avogadro's Number.

Avogadro's \# = $\frac{\text { volume one mole }}{\text { volume one molecule }}$

